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Abstract. We present periodic orbit quantizations of the hyperbola billiard and the x2y2 
potential. These two systems may be considered as belonging to the one-parameter family 
of potentials ( ~ ‘ y ‘ ) ’ ’ ~ .  The quantum states are determined by means of the zeros of an 
expanded and truncated Selberg zeta function. The symmetries of the problem are con- 
sidered and the Selberg zeta function is factorized into the irreducible representations of 
the symmetry group. The thus calculated eigenenergies are in good agreement with quantum 
mechanical calculations and converge when the number of terms in the expansion is 
increased. The results strongly indicate that the trace formula provides individual quantum 
eigenstates for chaotic systems. 

1. Introduction 

The correspondence principle tells us that a quantum theory, in order to be consistent, 
must yield the laws of classical mechanics in the limit fi * O .  How this transition is 
realized in practice has been the objective of extensive research. When studying the 
relations between the quantum and classical behaviour of Hamiltonian systems with 
few degrees of freedom, semiclassical methods like Einstein-Brillouin-Keller (EBK) 

quantization have proven remarkably useful. However, EBK quantization relies on the 
presence of invariant tori, i.e. it is oniy appiicabie on integrabie ana near-integrabie 
systems. There has been an extensive search for a corresponding scheme for ergodic 
and mixed systems. The trace formula by Gutzwiller [I ,  21 seems to offer a possible 
way to go. This formula relates the density of eigenenergies to dynamical invariants 
of the periodic orbits of a system: 

Here g ( E ) = T r  G(q, 9 ’ ;  E)  is the trace of the semiclassical Green function, and the 
densityofeigenstatesissimplygiven b y d ( E ) = - ( l / n )  lims+o Img(E+ie).Theindex 
p labels the primitive periodic orbits, S, is the action integral along the orbit, T, 
(=JS,/JE) its period, and A, is the linearized Poincark map around the orbit. The 
phase index p, is commonly referred to as the Maslov index. Finally, gdE)  provides 
the mean level distribution, which may be interpreted as the contribution from classical 
orbits of zero length. 

Applied to an integrable system the trace formula provides quantization conditions 
similar to those of EBK [3,4]. If, on the other hand, the system is ergodic, i.e. all 

0305-4470/91/204763+ 16$03.50 Q 1991 IOP Publishing Ltd 4163 



4764 P Dahlquist and G Russberg 

periodic orbits are unstable, the quantum eigenstates seem to be built up through a 
complicated inteference of many periodic orbits. In spite of its simple appearance, 
direct use of the trace formula to evaluate quantal spectra of chaotic systems has not 
been practiced except in a few cases [5-91. There are two main reasons for this: 

(i) the periodic orbit structure of a chaotic system is usually more complicated 
and difficult to determine than the exact quantum eigenenergies: 

(ii) due to the exponential proliferation of long periodic orbits the sum (1) is at 
best conditionally convergent. 

Difficulty (i) may be reduced if one can find a good symbolic dynamics for the 
system, i.e. a scheme that assigns a unique symbol string (coding) to each periodic 
orbit. Through difficulty (ii) there is a certain need for refined summation techniques; 
these will benefit from the firm control of the periodic orbit structure that is given by 
a good symbolic dynamics. 

Symbolic dynamics has so far been developed for some simple scattering systems 
[ IO,  111 ,  the anisotropic Kepler problem [SI and the quadratic Zeeman effect [12]. 
Refined summation techniques using zeta functions have been applied to open three- 
and four-disc scattering systems with good results [lo, 111. The introduction of zeta 
functions is motivated by the observation that the second term in ( I )  can be written 
as the logarithmic derivative of a Selberg zeta function, i.e. 

where Z ( E )  is defined as the infinite product 

The quantum weights tp in (3) are given by 

Attention has here been restricted to systems with two degrees of freedom: the 
eigenvalues of An are A,,, A;‘, where Ap = i e x p  U or A,, = exp iu, and U 3 0 is real 
[14]. Equation (4) is valid for unstable orbits (real eigenvalues); the inclusion of stable 
orbits (complex eigenvalues) requires slight modifications of ( I )  and (4) [2]. For a 
generic Hamiltonian relation (2) is true only to leading order in h, but for homogenous 
Hamiltonians, like those considered in this paper, it is actually exact. 

The purpose of the present paper is to apply a refined summation technique to 
some bound Hamiltonian systems. We will study the Hamiltonian 

appearing in the long wavelength limit of SU(2) Yang-Mills theories [15]. A similar 
system describes a hydrogen atom in a very strong magnetic field (the quadratic Zeeman 
effect) [12]. The system (5) has for a long time been believed to exhibit ergodic motion, 
but as we showed in [ 161 there exists at least one family of stable periodic orbits. 
Nevertheless, an overwhelming portion of phase space is occupied by chaotic motion, 
so it is still a suitable system for our purposes. 



Periodic orbit quantization of bound chaotic systems 4765 

We will also study the hyperbola billiard, i.e. a particle moving freely inside four 
hard reflecting walls determined by the equality 

Due to the concavity of the walls, all periodic orbits in this system are unstable [9]. 
A little modified, the system (6) (and ( 5 )  as well) may be used to model certain 
mesoscopic systems [17]. 

The systems ( 6 )  End ( 5 )  belong to the one-parameter F~mi!y of Eami!?onians, 

where the quartic potential (5) is obtained for a = 1 and the hyperbola billiard (6) is 
obtained in the limit a + 0. 

In section 2 we present a symbolic coding for the systems (7). We also show how 
siabie orbiis may occur when U i 0. in  seciion 3 wc brieiiy review 'now ihe Sciberg 
product factorizes into the irreducible representations of the symmetry group of the 
particular problem. We then expand this product and define a sequence of approximants 
to the infinite Selberg product. In section 4 we show how the zeros of this approximate 
Selberg product converge, thus giving us the quantum eigenenergies. We also briefly 
discuss the numerical techniques used to find the period orbits and their invariants. 
U, ..A -a... :+l. A:"...."":-- :.. ".."L,... c 
""C L V U l l l l  V U  W l l l l  a UlJCUJJlVl, U 1  J C C L l V l l  2. 

2. Symbolic dynamics 

The systems (7) are invariant under the group C,,". Considering the four branches of 
the hyperboias in (6j as discs we can iabei (periodicj orbits of the hyperboia biiiiard 
similarly to those of a symmetric four-disc system [9, 12,131. 

We use a three-character alphabet A = {2, I ,  0) to label the orbits: The scattering 
events (bounces) in a four-disc billiard are well defined in phase space, and each single 
scattering event is associated with a letter from the alphabet. Scattering from one disc 
to the diagonally opposite disc is given the code 2. Scattering to a neighbouring disc 

any cross-diagonal scatterings in between) was equally directed (clockwise or  anticlock- 
wise), and 0 if oppositely directed. 

Any closed orbit in the four-disc system defines a periodic bi-infinite sequence of 
symbols. A primitive, or  prime, periodic orbit is the shortest non-repeatiog traversal of 
a closed orbit. A primitive symbol sequence is analogously the shortest non-repetitive 

string denote that it is periodic, thus ,210. means.. . 102102102102102102102.. . , All 
cyclic permutations of a given primitive sequence are regarded as identical. 

Primitive sequences built up by the rules above correspond to families of distinct 
periodic orbits. The members of a certain family (all associated with the same symbol 
code) are related to each other via the transformations of the symmetry group, and 

fundamental domain is the region restricted by the symmetry lines y=O and y = x ,  
which are treated as hard walls; it is the smallest non-symmetric region on which all 
orbits of the full system may be mapped. In the fundamental domain the labelling as 
defined above is unique, i.e. there cannot be two periodic orbits associated with the 

. .  is given io i k  code 1 if the lasi siaiteiiiig io B nearest iieighboiii ( i h i i ~  not ioiiiiiing 

-I_ e F  o ..e-:,.A:c ce-..ennn llrn l e +  n nn:nt 3, rh-  hnninn:nn "+ +he nnrl ,.Fq e.,nL..I 
p , L L  "1 P IJC"UY1C "cquc""c. Ilr L b L  Y p"1a.L  '.L L . l b  "LB........6 "..U '3, L..C C.IU "1 Y " J L L 1 V V 1  

they are a!! mapped onto the same sing!e orbit in  the $ndQme!!!Q! domain. The 
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same primitive symbol sequence. A periodic orbit in the full domain may correspond 
to more than one traversal of the prime symbol sequence (and thus of the periodic 
orbit in the fundamental domain). In these cases the orbit in the full domain consists 
of several (two or four in the C,, case) equivalent pieces. 

In a system of well-separated discs all symbol sequences are realized as orbits in 
the system. However, in the hyperbola billiard some orbits are for geometrical reasons 
excluded, one speaks of pruning of the symbol dynamics. Two such examples are the 
sequences .210k. and which are pruned for k > 3 .  

By means of (7) we can define a one-to-one correspondence between orbits in the 
hyperbola billiard and orbits in the x2y2 potential. Since the bounces are no longer 
well defined for a > 0, we cannot use the bounce events to define a Poincart surface 
of section, instead we choose as surface of section the wall y = 0 in the fundamental 
domain. If nz is the number of 2s. n ,  the number of 1s and no the number of Os in a 
symbol string p ,  the corresponding orbit will intersect the surface of section n =  
2n2+ n ,  + no number of times. The reason is that a diagonal scattering (associated with 
the symbol 2) crosses both the y = 0 and x = 0 lines. Both these symmetry lines are 
mapped onto y = 0 in the fundamental domain and thus a diagonal scattering corre- 
sponds to two crossings of the surface of section. Continuity requires that a scattering 
through the origin is regarded as having two intersections. A scattering to a nearest 
neighbour (associated with symbol 1 or 0) crosses either y = 0 or x = 0, i.e. there is 
only one crossing of the surface of section in the fundamental domain. 

Figure 1 provides a selection of periodic orbits in the x2yz potential, presented 
both in the full and the fundamental domain. 

Not all orbits present in the hyperbola billiard exist in the x2y’ potential. When a 
is increase some of them will be (dynamically) pruned through inverse bifurcations. 
This happens to, for example, .210. and .1000.. We note that these two orbits have the 
same topology and make the same number of crossings ( n  = 4) with the surface of 
section. As a increases and the potential softens, the orbits approach each other (see 
figure 2.) until, at a ~ 0 . 6 2 ,  they coincide and disappear via a tangent bifurcation. In 
figure 3 we have plotted the trace of the monodromy matrix, Tr(M), for all orbits with 
n = 4, 8, 12 and 16 participating in the associated bifurcation cascade. We see that in 
this parameter region some orbits are occasionally stable (-2 < Tr(M) < 2) and global 
ergodicity is thus destroyed over a finite interval in the parameter a. If we define a 
new two-character alphabet, B={210, OlOO), one may conjecture that all primitive 
periodic sequences built from this alphabet are being pruned during the bifurcation 
cascade. At still lower values of the parameter a, the pairs of orbits .2100. and .10000., 
and .21000. and .100000., respectively, have undergone similar pruning cascades; at 
a = 1 one pruning rule will be ,210‘. and .lokt2. are pruned for k > O  (to be compared 
with the case a = 0 above; k > 3). 

A further pruning cascade occurs in the vicinity of a = 1.0 (see figure 4). This one 
is more complicated since there are two 2s in the symbol sequence. Z207.; each 2 is 
associated with an uncertainty whether to go the the diagonal ’disc’ directly or  via a 
‘bounce’ onto a nearest neighbour ‘disc’. This consideration gives 21  lo7., .012106. and 
.010107. as close relatives that will also be pruned in the cascade. The orbits ,220’. and 
.010107. are singlets under time reversal and ,2110’. and .012106. is a doublet. Singlets 
are recognized as librations in the fundamental domain and doublets as rotations. (see 
figure 1; the four orbits in figures l ( d - f )  only differ from these four by two Os in the 
symbol code. Thus they are further away from bifurcation and easier to distinguish 
visually.) Note that the doublet above is stable when a = 1 (the existence of this 

P Dahlquist and G Russberg 



Periodic orbit quantization of bound chaotic systems 

b) .l105 

1 

c) ,1106 

4767 

Figure 1. A selection of periodic orbits in the x2y2 model. The contour x2$= I encloses 
the energetically allowed region. 

‘ergodicity-destroying’ orbit has been reported elsehwere 1161). The complexity of this 
pruning cascade is well illustrated by the fate of the orbit Z 0 7  OlOlO’. (see figure 3). 
First it absorbs the doublet (.2207 21107., ,220’ 012106.) in a bifurcation at 0 ~ 1 . 0 2 4 .  
Then it makes a dip far below the plot and it is eventually killed by ,220’. through a 
pitch fork bifurcation at a - 1.067. 

We note that figures 3 and 4 indicate that the symbol codes are unique even in 
connection with these cascades and the result strongly suggests that the pruning process 
is monotonous in the sense that orbits are killed hut never horn when the parameter 
a is increased. 

A dominating feature of the systems (7)  is the intermittent oscillations in the 
potential ‘arms’. These oscillations correspond to orbits that contain long substrings 
of Os in the symbol code. There are sequences of allowed (periodic) strings .pooh., like 
the .20‘. and ,110’. families, which have no limit in the number of Os. As we have 
already seen examples of, there also exist sequences that are pruned after a certain 
number of Os. 
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Figure 1. (continued) 

3. Symmetry-projected zeta functions 

In [8, 10, 18, 201 discrete symmetries are taken into account in connection with the 
periodic orbit theory, and in [5,19] the correct description was given for orbits running 
along symmetry lines, orbits we will refer to as boundary orbits. 

The zeta function Z ( E )  in (3 )  is written as a product II,Z,(E) over r, the irreducible 
representations of the group, and each Z, is given by 

where the weights tri for the one-dimensional representations are given by 

All quantities now refer to periodic orbits in the fundamental domain, p, indicated by 
the overbar. x,(g@) is the group character of the representation r and g, is the group 
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a=0.1 

,210 .1000. 
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Figure 2. The orbits ,210. and ,0100. in the potential V = ~ ( x ' g ' ) l ' *  for different values of 
the parameter a. 

element obtained as the product of group factors associated with the reflections of the 
domain walls (see next section). The index p runs through all primitive periodic orbits 
in the fundamental domain; thanks to the compact definition of the symbolic coding, 
this means it runs over all non-pruned prime symbol sequences. The zeros of the zeta 
function Z, now correspond to quantum states with symmetries given by representation 
r. We continue by expanding the inner product in (8) according to Euler's identity: 

If we now expand the outer product, the zeta function can be written as a sum over 
ail distinct sets n = [inP], (called pseudo-orbits in [21]): 

where we have defined the quantities 

c, = n Cfi" 
P 

S, = 2 mFSP (14) 

wn =I: mpfiP.  (15) 

P 

P 

One can, at best, hope for conditional convergence of this sum, and one therefore has 
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Tr(M) n 

: ;  
, .  

. .  , .  

- i n -  2 1 G O L O O .  
, ,  , ,  , ,  . .  

21001GOO100 0100. : ;  
~ 

.2102100100. ~2102101100lOG. 

.58 .59 .6 .61 .62 

a 
Figure 3. The trace of the monadromy matrix, Tr( M ) ,  as a function of a, far some selected 
orbits participating i n  the bifurcation associated with the pruning of the orbits i n  figure 2. 
The full curves are associaled with tangent and pitchfork bifurcations and the broken ones 
with higher-order bifurcations. 

to be careful when ordering the terms. A natural choice is to order the terms in (12) 
by decreasing order in IC,l. We define 

“ G N  

where we let n also denote the position in the sequence of the corresponding set. The 
crucial question is now whether the zeros of Z N ( E )  approximate the zeros of Z ( E ) ,  
and whether they converge when N +W.  

As was mentioned before, the boundary orbit must be given a special treatment. 
The result of such an analysis is that for the representations A, and Bz the product in 
(8) is to include only euen values of k, and for the representations A, and E ,  only odd 
values. The amplitudes C. have to be modified accordingly. 

4. Computation and results 

Periodic orbits of the hyperbola billiard are obtained from an extremum principle in 
accordance with [9]. The stability eigenvalues are also obtained according to [9]. 
Periodic orbits in the system ( 5 )  are then found by adiabatically increasing the parameter 
a in (7) and tracing the fixed points on the PoincarC surface of section y = O  with a 
Newton method. The equations of motion are solved using a fourth-order Runge-Kutta 
method, and the stability eigenvalues are now obtained by solving the linearized 
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.S I 1.01 1.02 1.03 1.M 1.05 1.06 

a 
Figure 4. The trace of the monodromy matrix for some orbits participating in a pruning 
cascade in the vicinity of a =  1. The brackets embrace orbits related by time translation 
symmetry. 

equations of motion around the particular orbit. Care has to be taken with the signs 
of the eigenvalues, since the dynamics is defined inside the fundamental domain. One 
finds that sgn (A,) = (-l)"z+"'. 

The group characters X,(g,) are also conveniently expressed in terms of n 2 ,  n ,  
and no: 

A simple intuitive interpretation of these rather abstract factors would he to regard 
them as 'additional phase indices'. The quantum states of a certain representation (say 
B , )  are the same as  those of a quantum system defined on the fundamental domain 
with certain boundary conditions imposed on the domain walls. In the B ,  case, for 
instance, we have Neumann boundary conditions on the line y = 0 and Dirichlet 
boundary conditions on the line y = x. An orbit bouncing on a 'Dirichlet wall' aquires 
a phaseshift TI whereas a bounce on a 'Neumann wall" aquires zero phaseshift, 
according to familiar wave dynamics. During one period of the orbit these phaseshifts 
multiply up to the x,(g,) in (17). Two-dimensional representations are more compli- 
cated. 

The phase index ( a  > 0) is found to equal the length of the symbol sequence, i.e. 
f iD=  n , + n , + n , .  This corresponds t o  a phase loss rr/2 for every reflection of the 
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potential (not counting the reflection of the domain walls), and is confirmed by explicit 
calculation according to [2] and [22] for a large number of orbits. 

The phase indices in the hyperbola billiard ( a  = 0) are obtained using the fact that 
each bounce on a hard wall acquires a phaseshift T in the wavefunction, i.e. p,,= 
2(n2+ n, +no). 

The phase indices and the signs of the eigenvalues might change in connection 
with a pruning cascade (see figure 4)! 

Due to the homogeneity of the Hamiltonian it suffices to study the classical motion 
at a single fixed energy; we choose E,=$. We introduce a scaled energy k(E)  and 
express the action integral S, as S, = T,(E = E,)k( E ) ;  k (  E )  is found from the scaling 
relations and the familiar identity T, =aS,/aE: 

2 

P Dahlqvisf and G Russberg 

(18) (0+2)14  k(E)=a+2(2E)  . 

The other orbit invariants are dimensionless and hence independent of energy. 
With the M least unstable periodic orbits one can construct the N = 1.3M first 

pseudo-orbits (see [Zl]). Due to the intermittent behaviour of the system, great care 
has to be taken so that one really gets the M least unstable orbits; the stability exponent 
is not simply proportional to the length of the symbol string like in a typical hyperbolic 
system (which is the case in [lo]). This may be illustrated by the following example: 
among the M = 135 least unstable orbits in the hyperbola billiard the one with the 
longest symbol string has length 40, but there are about 10’’ orbits with length 40! 
When a > 0 complications arise due to sequences like .220k., for which the stability 
index is not a monotonous function of k. This phenomenon is connected with the 
pruning for a certain k > k,,, . 

After these precautions we feel confident that we have obtained the 135 least 
unstable orbits in the hyperbola billiard and the 70 in the x 2 y 2  potential. In the x2y2  
potential we have excluded all orbits contributing to the bifurcation cascade in figure 
3. Due to the smallness of the corresponding KAM island it cannot support any quantum 
states unless they have very high energy. This is achieved through a subtle interference 
of the (infinitely many) stable and unstable orbits in the stability island. Since it is 
certainly not straightforward to include stable orbits in (16) we exlude these stable 
orbits together with the unstable ones. The exclusion of these orbit from the calculation 
might induce a small shift in energies even for the lower states studied in this article. 
Only the first 12orbits in the x 2 y 2  potential in the sequences .2Ok. and .llOk.,respectively, 
have been calculated explicitly. The invariants for the rest of these sequences are 
obtained from the fact that, asymptotically, A and S 2  increase linearly with k to a high 
degree of accuracy, as can be shown using the adiabatic approximation. 

We search for zeros of Z,( E )  in the complex k-plane rather than in the E-plane. 
The results (see tables 1 and 2 and figure 5 )  strongly indicate that it is possible to 
calculate individual eigenstates with a finite number of pseudo-orbits. With the number 
of orbits used in figure 5 the first six (eight) eigenvalues of the x 2 y 2  potential (hyperbola 
billiard) are resolved. If more orbits are added more levels will eventually be resolved. 
What typically happens is that (i) the resolved zeros converge to their final positions 
and (ii) at higher k(E)  new zeros are created, or old zeros split, start to approach the 
real k-axis, eventually to be associated with the quantum states. 

One clearly sees from figures 6 and 8 that the zeros converge to positions in a 
neighbourhood of the real k-axis and that the real parts are close to the exact quantum 
mechanical values, (Some pseudo-orbits are lacking for 100< n < 200 in the x 2 y 2  case.) 
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Table 1. Zeros of ZN=lg4(k) in the strip O<Re(k)<3.5, -0.5<Im(k)<0.5 far the X'Y' 

potential in the A,  representation. Zeros close to the real k-axis are associated with quantum 
eigenvalues (third column). 

W k )  Im(k) kQM 

0.1386 -0.1221 
0.6562 -0.1212 
0.7005 0.0687 0.7201 
1.3809 -0.1677 
1.7495 -0.3186 
1.7778 -0.0628 1.7114 
2.1993 0.0042 2.2241 
2.6327 -0.0005 2.6312 
3.0025 -0.0144 2.9856 
3.3090 -0.0731 3.3037 

Table2 ZerosofZ,_,,,(k) inthe strip4< Re(k) < 10, -0.3 < Im(k) <0.3 farthe hyperbola 
billiard in the A, representation. Zeros close to the real k-axis are associated with quantum 
eigenvalues (third column). 

4.0990 
4.5269 
4.6254 
4.7906 
5.1406 
5.4507 
5.8551 
6.0586 
7.0018 
7.0649 
7.7891 
8.1153 
8.6820 
8.8107 
9.1612 
9.8429 

-0.1512 
-0.1382 
-0.0497 4.632 
-0.2307 
-0.1704 
-0.2049 
-0.1619 
-0.0082 6.023 
-0.0044 7.031 
-0.1946 
-0.0390 7.714 
-0.1073 8.243 
-0.0877 8.777 
-0.2335 
-0.1 I 1 3  9.287 
-0.0772 9.863 

The quantum mechanical data are cited from [9] for the hyperbola billiard and 
[23] for the x z y 2  potential. 

There are additional (spurious) zeros, especially among the lower states. However, 
these tend to keep away from the real k-axis as N + W .  The behaviour of a typical 
spurious zero is seen in figure 7. Generally, one expects generations of non-leading 
zeros of the Selberg product (see [24]). This phenomenon is probably an artifact 
induced by the stationary phase approximation leading to ( I ) .  

We note (see figure 8) that the convergence in the x 2 y 2  system is more convincing 
than in the hyperbola billiard. This fact may be attributed to finite sequences of the 
form poOk. They are generally pruned for much higher k,,, in the hyperbola billiard 
than in the x2y2 model. Since A increases more slowly than linearly for these finite 
sequences they will cause convergence problems for the hyperbola billiard while the 
x2y2 model will be more dominated by the infinite sequences .20x. and .llOx.. 
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Figure 5. ( a )  Zeros of Z,=,, in the complex k-plane (x2yi potential in representation 
AI ) .  ( b )  Zeros of Z,..,,, in the complex k-plane (hyperbola billiard in representation AJ. 
Quantum mechanical values are indicated by vertical bars an the real axis. 

5. Discussion 

The fact that the phase index I*,, in the hyperbola billiard turns out to be twice as 
large as the corresponding index in the quartic potential may seem like a very disturbing 
discontinuity in the limit a --f 0. In this connection it is instructive to compare semi- 
classical (WKB) and quantum mechanical energy levels in the one-parameter family of 
potentials V = (x')"". For the harmonic oscillator ( a  = 1) the W K B  calculation happens 
to yield the exact quantum mechanical result (with a phase index of 2). When decreasing 
a, however, the WKB results get increasingly worse, especially for low-lying states. In 
the limit a + 0 (infinite square well) the semiclassical results suddenly turns exact again, 
provided one doubles the phase index. One could in principle obtain better semiclassical 
results by letting the phase index interpolate between 2 and 4, and it would certainly 
be nice to derive such an interpolating relation, though this is far outside the subject 
of this paper. 

We note that there is a close connection between the expansion (16) and the 
curvature expansions in [IO, 251. In the latter the zeta function is written as Z ( E )  = 
II,(l- t , )  = 1 - X f l , - X w  c,, where X,l, is a sum over thefundamental orbits, i.e. orbits 
that cannot he approximated in terms of shorter ones, and X n c n  is the curvature 
contribution to the sum. The curvature corrections c. are built from longer orbits (not 
fundamental) minus their approximations in terms of shorter, shadowing orbits. In a 
truly hyperbolic system, e.g. the open three-disc system studied in [IO]), the corrections 
fall off faster than exponentially. If on the other hand the symbolic dynamics is pruned 
the alphabet has to be redefined, in order to have a well-converging curvature expansion. 
This leads in general to an infinite number of fundamental orbits. If the grammar is 
finite, i.e. there is a finite set of pruning rules, there exist schemes for a systematic 
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Figure 6. Convergence of the real and imaginary pan of the zeros k of Z d k )  associated 
with the ( 0 )  second and ( b )  fourth eigenstates (x’y’ potential in the A,  representation). 

construction ofthis redefined symbolic dynamics C26.271. However, even in very simple 
found systems, e.g. a closed three-disc system, a finite grammer has not yet been found. 
The problem of finding a curvature expansion for a specific system easily gets infinitely 
complicated. 

The expansion (16) has the advantage of being independent of the symbolic 
dynamics. If we apply it to the open three-disc scattering system we would regain the 
curvature expansion of [lo], (provided one cuts off the expansion for appropriate N). 
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Figure 7. Typical behaviour of a zero of Z, not associated with any quantum state (x 'y*  
potential in the A, representation). 
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Figure 8. Convergence of the real and imaginary pans of the zeros of Z,(k) associated 
with the fourth eigenstates (hyperbola billiard in the A, representation). 
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The expansion will adjust itself for complications (i.e. deviations from hyperbolicity) 
that arise naturally in bound systems, e.g. intermittency, long orbits with anomalously 
low instability and pruning of the symbolic dynamics. 

If one does not have a good grammar for the system, the expansion (16) is a very 
natural object to use. However, if one could find a proper shadowing scheme, prere- 
quisiting a good control of the symbolic dynamics and its pruning rules, the result 
would probably be improved. This means that one could be able to group the pseudo- 
orbits in such a way that a shadowed orbit is placed on the same side of the cut-off 
N as the shadowing pseudo orbit. This would naturally decrease the oscillations that 
are now superposed on the convergence. We hope to return to these questions in future 
work. 

There has been much interest focused on the formal similarity between the Selberg 
zeta function for a chaotic system and the Riemann zeta function [21,28]. The 
non-trivial zeros of the Riemann zeta function are (according to Riemann’s hypothesis) 
centred on the strip where the Euler product and the Dirichlet series representations 
of it diverges. It would be tempting to generalize this fact and claim that the Selberg 
zeta function for a generic chaotic system is divergent, but such a generalization is 
dangerous since the Selberg zeta function has a totally different analytic structure due 
to the product over k (see (3)). The occurrence of phase indices in a dynamical system 
(they are absent in the Riemann case) might also have importance for the convergence. 
If the trace formula is convergent (for some systems at least) it is conditionally 
convergent and there is therefore a potential danger of obtaining different results from 
different summation techniques. 

In a paper by Berry and Keating [21] a resummation technique based on an analogy 
with a derivation of the Riemann-Siege1 formula is presented, based on a self-duality 
of the Riemann zeta function. However, as the authors themselves note, such a 
self-duality for a general chaotic system would require a ‘miraculous conspiracy’ which 
we have no reason to expect to hold exactly, although this and related ideas to use 
the knowledge of the mean level density in a resummation scheme might very well be 
fruitful [29-311. 
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